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1. Shift systems

Lecture 1 Lecture 2
RANDOM PROCESSES DYNAMICAL SYSTEMS
Random sequence Orbit
Stationary probability distribution Invariant measure
Stationary random process Measure-preserving DS
Shannon entropy 777

Questions.

Q1 Can RP be formulated as DS?
Al Yes, via shift systems (Sect. 1)

Q2 Can a DS generate a random sequence?
A2 Yes, via partitions (Sects. 2 & 4)
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1. Shift systems

Fact. Every stationary, finite-state X = {X,,} can be associated with a
measure-preserving DS (X%, o, m)

@ the state space X'® is a sequence space,

PrS {25 = (x0, %1, 000, Xny o) 1 x5 € X'} if X is one-sided
O A{x® = (e Xy ey X0, e Xy ) 1 Xy € XL if Xis two-sided

e the map o is the (left) shift transformation,
O (eoey Xty ey X0, X1y ooy Xty o) = (eoey X1, vy X1, X2, o0y Xyt 1, 1),
@ the shift invariant measure m is
m{xg or XXy, 1 x;y = a1,..., %, = an} = Pr{Xy =a1,..,X;, =an}

= (X®,0,m) is called the shift space model of X.
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1. Shift systems

Remarks.

@ Shift space models allow to deal RP as DS

@ The states are infinite sequences.

@ The “transported” measure m is invariant because X is stationary.
@ The shift transformation ¢ models time passing.

e X is ergodic iff (X', 0, u) is ergodic.
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1. Shift systems

Example. (Coin tossing) X, € {0,1}, n > 0, with

PI‘{Xn = 0} = po,PI‘{Xn = 1} =p1= 1 — Po-

o X* = {x’ = (x0,%1,..., Xn, ..) : Xy = 0,1} = {binary sequences}
o Mm{XG 1 Xy = Qny ey Xyl = Ing1} = PiyoePi-
This shift space is called the (po, p1)-Bernoulli shift system.

Interpretation: Each binary sequence x(’ is a possible outcome of the
random experiment.
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1. Shift systems

Generalization. (Dice rolling, etc.) If X,, are i.i.d. random variables,
X ={0,..,k—1}, and

Pr{X, =i} = pi,
the shift space model is called the (po, ..., px_1)-Bernoulli shift system.
They exhibit all properties of low-dimensional chaos:
@ Sensitivity to the initial condition (butterfly effect)
o Ergodicity

e Transitivity (existence of a dense orbit = Boltzmann's
Ergodenhypothese)
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2. Symbolic dynamics

Next we address Question 2.

Definition. A (finite) partition of () is a finite family of subsets
o ={Ao, ... Ax_1} st
(1) AiNA; =@ fori ],
(2) AgUAIU..UA 1 = Q.
Example. Partition of a 1D interval Q) = [a,b] into k bins (binning): Let
b—a

A=,

then

Ay=[a,a+A),A1=[a+7Aa+2A),.., A1 =[a+ (k—1)Aa+kA].

The process of partitioning a state space is called “coarse-graining” or
“quantification” .
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2. Symbolic dynamics

Definition. Given

@ a measure-preserving dynamical system (Q,f, 1), and
@ a partition &« = {Ay, ..., Ax_1} of Q,

we associate to each x € Q) its itinerary wrt «, i.e.

X = 0, 01, ooy B, oo With i, = jif f7(x) € A;.
Example. Let Q = [0,1], f(x) = 4x(1 —x), and

a = {Aog, A1}, Ap=1[0,1/2), Ag = [1/2,1],
and xg = 0.1. Then

orbit of xp = 0.1,0.36,0.9216,0.28901,0.82194,0.58542, ...
itinerary of x = 0,0,1,0,1,1,...
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2. Symbolic dynamics

Let ig, i1, ..., in, ... be the itinerary of x wrt & = {A, ..., Ax_1}. Set
X"‘(x) = io, il,..., in,... = {Xﬁ(x)}nzo
Fact. X" is a stationary, finite-alphabet RP, X = {0, ...,k — 1}, with

Pr{X& =io, X* =i1,.., X® =iy} =1 (Aio nf A, N... mf‘”Ain> .

Definition. X is called the symbolic dynamics of f wrt a.

e If f is invertible, the itineraries and symbolic dynamics are two-sided.
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3. Kolmogorov-Sinai entropy

Let X* = {X%} be the symbolic dynamics of f wrt to &« = {A,, ..., Ax_1}.
Definition.

@ The entropy of f wrt « is

(@) = h(XY)

e The metric (or Kolmogorov-Sinai) entropy of f is
hy(f) = sup by (f, &)
o

Fact. If (X, 0,m) is the shift space model of a random process X, then

H(07) = B(X).
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3. Kolmogorov-Sinai entropy

A partition y of Q) is called a generating partition or a generator of f if
hy(f) = hy (7).

The computation of h,(f) is in general difficult. Exceptions:

@ A generator of f is known (seldom, but there are numerical methods).

@ If the invariant measure is smooth (i.e., u(dx) = p(x)dx with p
differentiable), the KS entropy is the sum of the positive Lyapunov
exponents (Pesin’s formula).

@ A closed formula is known for some maps (Bernoulli shifts, etc.)

Otherwise. Calculate hy(f,oc) for ever finer box partitions &y, &y, ..., &y, ...

,}ij{;hy(ﬂ &n) =y (f).
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4. Generating partitions

Example. Let (X, 0,m) be a (py, ..., pk—1)-Bernoulli (one-sided) shift
space. The partition v = {Co, ..., Cx_1},

Co = {XSO L Xo = O}, C1 = {XSO LX) = 1},..., Ckfl = {x8° - X0 :k—l}
can be proved to be a generator of the shift transformation, so
k—1

h(0) = hy(0,y) = — ;Jm(Ci)logm(Ci).
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4. Generating partitions

Let (Q),f, ) be a measure-preserving dynamical system. There exist
generators of f under quite general conditions.

Fact. Let ¥ be a generator of f. Then

] the shift space model of X7 is an “isomorphic copy” of (Q),f, i) ‘

Consequences.

itinerary X7 (xp) <« initial condition x
KS entropy hy,(0) = h(X”) = KS entropy hy(f)
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4. Generating partitions

If two DS are isomorphic, their generators correspond.

Example. The logistic and tent maps are isomorphic to the

(%, %)—Bernoulli (one-sided) shift via measure-preserving transformations
that map the generator

1

Y = {Co,cl}, where Co = {XSO Xy = O},Cl = {x8° Xy = 1},
of the Bernoulli shift into the partition
a = {Ag, A1}, where Ay =[0,3), Ay = [3,1],

of O =[0,1].

1J.M.Amigé, Permutation Complexity in Dynamical Systems, Springer Verlag, 2010.
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4. Generating partitions

Application. Numerical generation of random binary sequences.

@ Take a number x( € [0,1].
@ Let f be the logistic or (better) the tent map. Set

[0 iffr(x) <05
bn = { 1 i (v) > 05

Then the binary sequence {b; },>0 is i.i.d. with

Pr{b, =0} = u{0,})} =1,
Prib, =1} = p{[3 1} =3

Warning. Computers are finite-state machines!
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4. Generating partitions

Summary:

|  RANDOM PROCESSES DYNAMICAL SYSTEMS |

Stationary random process
Symbolic dynamics wrt «
Symbolic dynamics wrt -y

Shannon entropy

Shift space model

DS + Partition «

DS + Generator v
Kolmogorov-Sinai entropy

ritr
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5. Ordinal symbolic dynamics

Ordinal patterns provide a natural way to define a symbolic dynamics.

Definition. The “ordinal L-pattern”, “rank vector" or “type" of L points
X0, X1, ..,XL—1 in a linearly ordered set Q) is the permutation

{0, 1, ...,L — 1} — {7T(), TT1, eeey 7'L'L_1}
such that
Xy < Xy < oo < Xy -
Notation.

@ 7T = <7To, TT1, eeey 7TL,1>
o {ordinal L-patterns} = S; (#S. = L!)

Convention. If x; = x; then we set x; < x; if i <.
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5. Ordinal symbolic dynamics

Examples.

Q0 O=R,
x0:\/§, x1=e xp =2, x3=—1.7,

then
T =(3021).

@ Ordinal patterns of length L = 3.

LI
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5. Ordinal symbolic dynamics

If xp,x1,..., X1 = X(),f(XQ), .‘.,fL_l (XQ) has type 7T, then we say that xg
has type 7t.

Example. I = [0,1], f(x) = 4x(1 — x), then
(f"(0.6416)),>0 = 0.6416, 0.9198, 0.2951, 0.8320,0.5590, 0.9861, . ..
Hence x = 0.6416 has the types

(0,1),(2,0,1),(2,0,3,1),(2,4,0,3,1),(2,4,0,3,1,5),. ..
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5. Ordinal symbolic dynamics

Example (cont'd). Visualization of ordinal 2-patterns

1

01 10
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5. Ordinal symbolic dynamics

Example (cont'd). Visualization of ordinal 3-patterns

1

201
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5. Ordinal symbolic dynamics

Ordinal symbolic dynamics is the symbolic dynamics which symbols
are ordinal patterns of a fixed length L.

The state space () gets divided in L! disjoint subsets P, m € Si,

namely
Pr={x€ Q:xhastype T € S}

The partition
is called the ordinal partition of () of length L.
Use 3 < L <7 in applications.
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5. Ordinal symbolic dynamics

Definition. An ordinal L-pattern 7T is said to be forbidden for f if Py = @,
i.e., there is no x € () of type 7r. Otherwise they are called admissible.

If () is an interval of R, f : () — () is called piecewise monotone if there
is a finite partition of () into intervals, such that f is continuous and
monotone on each of those intervals.

Fact. If f is a piecewise strictly monotone interval map, then it has
forbidden pattern of sufficiently large length.
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Example. The logistic map has 1 forbidden 3-pattern (210)
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5. Ordinal symbolic dynamics

A) Permutation entropy of a random process

® X = {Xy},>q a random process
e p(7r) the probability that Xy, ..., X;—1 has type T € St
Then, the permutation entropy of order L of X is
h(Xy,..Xp) = ———= Y p(mn)logp(n),
eSSy
and the permutation entropy of X is

h*(X) = lim h*(Xy,..XL) = — hm — Z p(m)logp(

L—o0 7T€SL

Fact?. If X is finite-alphabet and stationary, then h*(X) = h(X).

2J.M.Amigé, Physica D 241 (2012) 789.
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5. Ordinal symbolic dynamics

B) Permutation entropy of a dynamical system

e (O, f,u) a measure-preserving DS
@ PL={Pr#@:m €S} the ordinal partition

Then, the metric permutation entropy of order L of f is

L (f; PL) = —% Y 1(Px)logu(Pr),

TES]

and the permutation entropy of f is

. - 1
m(f) = = lim I (f;Pr) = — lim ==} j(Px) log 4(Px),

- weSy
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5. Ordinal symbolic dynamics

Fact®. If Q is a 1D interval and f is piecewise-monotone,
() = I (F) = lim I (5 Py).

= The ordinal partitions Py, P3, ..., Pr, ... build a generating sequence.

3C. Bandt, G. Keller, and B. Pompe, Nonlinearity 15 (2002) 646.
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6. Detection of determinism

Detection of determinism in noisy signals is an application of ordinal
symbolic dynamics.

Consider a finite, noisy time series

Cn = f"(x0) + wy
(0 <n < N —1) where w, is white noise.
Facts.

@ Deterministic signals have forbidden patterns (but they are ‘destroyed’
by the noise)

e Random signals have no forbidden patterns (but finite signals may
have missing ordinal patterns)
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6. Detection of determinism

Null hypothesis:

’ Hy: the ¢, are i.i.d. ‘
Detection method 1: Count and shuffle.

@ Count the number of missing pattern is a sliding window of size L
© Randomize the sequence

© Repeat step 1 an compare.

If the counts in steps 1 and 3 are very different, reject Hy.
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6. Detection of determinism

Null hypothesis:

’ Hy: the ¢, are i.i.d. ‘

Detection method 2: Chi-square test.

@ Take a sliding window of size L and compute

E(VH—K/L!)Z_E Yoo

2
K/L' K n K
' meS;: visible

X*(L) =

neS,

where v is the number of windows of type T € S;.

@ Reject Hy with confidence level o if

2 2
X > XLi-11—ar

where )(%!71/1% is the upper 1 — a critical point for the chi-square
distribution with L! — 1 degrees of freedom.
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6. Detection of determinism

Numerical simulation. The Lorenz map
Xn+1 = XuYn — Zn, Yn+1 = Xn, Zp+1 = Yn-

has an attractor with D1 = 2.

n+l
o

Xot

Figure. Return map of the x-component contaminated with Gaussian
white noise (¢ = 0.25)
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6. Detection of determinism
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Figure. Average number of missing L-patterns for the x-component of
noisy Lorenz time series &) (o = 0.25).
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6. Detection of determinism
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Figure. Average number of missing L-patterns for Gaussian white noise
wY (0 =0.25).
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6. Detection of determinism

200

Figure. Distribution of x?(L = 4) for noisy Lorenz time series &1°% with

o = 0.25 (continuous line) and o = 0.50 (dashed line). Rejection
threshold: )(%3,0.95 = 35.17.
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6. Detection of determinism
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Figure. Distribution of x?(L = 5) for noisy Lorenz time series 5?000 with
o = 0.25 (continuous line) and o = 0.50 (dashed line). Rejection

threshold: X%19,0.95 = 145.46.
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6. Detection of determinism

Comparison with the BDS test of independence.

Figure. Rejection probability for a noisy Lorenz time series using the BDS
test with different parameters (continuous lines) and forbidden patterns
(dashed line).
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