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1. Shift systems

Lecture 1 Lecture 2
RANDOM PROCESSES DYNAMICAL SYSTEMS

Random sequence Orbit
Stationary probability distribution Invariant measure

Stationary random process Measure-preserving DS
Shannon entropy ???

Questions.

Q1 Can RP be formulated as DS?
A1 Yes, via shift systems (Sect. 1)

Q2 Can a DS generate a random sequence?

A2 Yes, via partitions (Sects. 2 & 4)
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1. Shift systems

Fact. Every stationary, �nite-state X = fXng can be associated with a
measure-preserving DS (X∞, σ, m)

the state space X∞ is a sequence space,

X∞ =

�
fx∞

0 = (x0, x1, ..., xn, ...) : xn 2 Xg if X is one-sided
fx∞
�∞ = (..., x�n, ..., x0, ..., xn, ...) : xn 2 Xg if X is two-sided

the map σ is the (left) shift transformation,

σ(..., x�n, ..., x0, x1, ..., xn, ...) = (..., x�n+1, ..., x1, x2, ..., xn+1, ...),

the shift invariant measure m is

mfx∞
0 or x∞

�∞ : xi1 = a1, ..., xin = ang = PrfXi1 = a1, ..., Xin = ang

=) (X∞, σ, m) is called the shift space model of X.
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1. Shift systems

Remarks.

Shift space models allow to deal RP as DS

The states are in�nite sequences.

The �transported�measure m is invariant because X is stationary.

The shift transformation σ models time passing.

X is ergodic i¤ (X∞, σ, µ) is ergodic.
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1. Shift systems

Example. (Coin tossing) Xn 2 f0, 1g, n � 0, with

PrfXn = 0g = p0, PrfXn = 1g = p1 = 1� p0.

X∞ = fx∞
0 = (x0, x1, ..., xn, ...) : xn = 0, 1g = fbinary sequencesg

mfx∞
0 : xn = in, ..., xn+l = in+lg = pin ...pin+l .

This shift space is called the (p0, p1)-Bernoulli shift system.

Interpretation: Each binary sequence x∞
0 is a possible outcome of the

random experiment.
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1. Shift systems

Generalization. (Dice rolling, etc.) If Xn are i.i.d. random variables,
X = f0, ..., k� 1g, and

PrfXn = ig = pi,

the shift space model is called the (p0, ..., pk�1)-Bernoulli shift system.

They exhibit all properties of low-dimensional chaos:

Sensitivity to the initial condition (butter�y e¤ect)

Ergodicity

Transitivity (existence of a dense orbit = Boltzmann�s
Ergodenhypothese)
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2. Symbolic dynamics

Next we address Question 2.

De�nition. A (�nite) partition of Ω is a �nite family of subsets
α = fA0, ..., Ak�1g s.t.

(1) Ai \Aj = ∅ for i 6= j,
(2) A0 [A1 [ ...[Ak�1 = Ω.

Example. Partition of a 1D interval Ω = [a, b] into k bins (binning): Let

∆ =
b� a

k
,

then

A0 = [a, a+ ∆), A1 = [a+ ∆, a+ 2∆), ..., Ak�1 = [a+ (k� 1)∆, a+ k∆].

The process of partitioning a state space is called �coarse-graining�or
�quanti�cation�.
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2. Symbolic dynamics

De�nition. Given

a measure-preserving dynamical system (Ω, f , µ), and
a partition α = fA0, ..., Ak�1g of Ω,

we associate to each x 2 Ω its itinerary wrt α, i.e.

x 7! i0, i1, ..., in, ... with in = j if f n(x) 2 Aj.

Example. Let Ω = [0, 1], f (x) = 4x(1� x), and

α = fA0, A1g, A0 = [0, 1/2), A0 = [1/2, 1],

and x0 = 0.1. Then

orbit of x0 = 0.1, 0.36, 0.921 6, 0.289 01, 0.821 94, 0.585 42, ...
itinerary of x0 = 0, 0, 1, 0, 1, 1, ...
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2. Symbolic dynamics

Let i0, i1, ..., in, ... be the itinerary of x wrt α = fA0, ..., Ak�1g. Set

Xα(x) = i0, i1, ..., in, ... � fXα
n(x)gn�0

Fact. Xα is a stationary, �nite-alphabet RP, X = f0, ..., k� 1g, with

Pr fXα
0 = i0, Xα

1 = i1, ..., Xα
n = ing = µ

�
Ai0 \ f�1Ai1 \ ...\ f�nAin

�
.

De�nition. Xα is called the symbolic dynamics of f wrt α.

If f is invertible, the itineraries and symbolic dynamics are two-sided.
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3. Kolmogorov-Sinai entropy

Let Xα = fXα
ng be the symbolic dynamics of f wrt to α = fA0, ..., Ak�1g.

De�nition.

The entropy of f wrt α is

hµ(f , α) = h(Xα)

The metric (or Kolmogorov-Sinai) entropy of f is

hµ(f ) = sup
α

hµ(f , α)

Fact. If (X∞, σ, m) is the shift space model of a random process X, then

hm(σ) = h(X).
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3. Kolmogorov-Sinai entropy

A partition γ of Ω is called a generating partition or a generator of f if

hµ(f ) = hµ(f , γ).

The computation of hµ(f ) is in general di¢ cult. Exceptions:

1 A generator of f is known (seldom, but there are numerical methods).
2 If the invariant measure is smooth (i.e., µ(dx) = ρ(x)dx with ρ
di¤erentiable), the KS entropy is the sum of the positive Lyapunov
exponents (Pesin�s formula).

3 A closed formula is known for some maps (Bernoulli shifts, etc.)

Otherwise. Calculate hµ(f , α) for ever �ner box partitions α1, α2, ..., αn, ...

lim
n!∞

hµ(f , αn) = hµ(f ).
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4. Generating partitions

Example. Let (X∞, σ, m) be a (p0, ..., pk�1)-Bernoulli (one-sided) shift
space. The partition γ = fC0, ..., Ck�1g,

C0 = fx∞
0 : x0 = 0g, C1 = fx∞

0 : x0 = 1g, ..., Ck�1 = fx∞
0 : x0 = k� 1g

can be proved to be a generator of the shift transformation, so

hm(σ) = hm(σ, γ) = �
k�1

∑
i=0

m(Ci) log m(Ci).
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4. Generating partitions

Let (Ω, f , µ) be a measure-preserving dynamical system. There exist
generators of f under quite general conditions.

Fact. Let γ be a generator of f . Then

the shift space model of Xγ is an �isomorphic copy�of (Ω, f , µ)

Consequences.

itinerary Xγ(x0) $ initial condition x0
KS entropy hm(σ) = h(Xγ) = KS entropy hµ(f )
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4. Generating partitions

If two DS are isomorphic, their generators correspond.

Example. The logistic and tent maps are isomorphic to the
( 1

2 , 1
2 )-Bernoulli (one-sided) shift via measure-preserving transformations

1

that map the generator

γ = fC0, C1g, where C0 = fx∞
0 : x0 = 0g, C1 = fx∞

0 : x0 = 1g,

of the Bernoulli shift into the partition

α = fA0, A1g, where A0 = [0, 1
2 ), A1 = [

1
2 , 1],

of Ω = [0, 1].

1J.M.Amigó, Permutation Complexity in Dynamical Systems, Springer Verlag, 2010.
J.M. Amigó (CIO) Nonlinear time series analysis 16 / 40



4. Generating partitions

Application. Numerical generation of random binary sequences.

1 Take a number x0 2 [0, 1].
2 Let f be the logistic or (better) the tent map. Set

bn =

�
0 if f n(x0) < 0.5
1 if f n(x0) � 0.5

Then the binary sequence fbngn�0 is i.i.d. with

Prfbn = 0g = µf[0, 1
2 )g =

1
2 ,

Prfbn = 1g = µf[ 12 , 1]g = 1
2 .

Warning. Computers are �nite-state machines!
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4. Generating partitions

Summary:

RANDOM PROCESSES DYNAMICAL SYSTEMS
Stationary random process ! Shift space model
Symbolic dynamics wrt α  DS + Partition α
Symbolic dynamics wrt γ = DS + Generator γ

Shannon entropy $ Kolmogorov-Sinai entropy

J.M. Amigó (CIO) Nonlinear time series analysis 18 / 40



5. Ordinal symbolic dynamics

Ordinal patterns provide a natural way to de�ne a symbolic dynamics.

De�nition. The �ordinal L-pattern�, �rank vector�or �type�of L points
x0, x1, ..., xL�1 in a linearly ordered set Ω is the permutation

f0, 1, ..., L� 1g �! fπ0, π1, ..., πL�1g

such that
xπ0 < xπ1 < ... < xπL�1 .

Notation.

π = hπ0, π1, ..., πL�1i
fordinal L-patternsg = SL (#SL = L!)

Convention. If xi = xj then we set xi < xj if i < j.
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5. Ordinal symbolic dynamics

Examples.

1 Ω = R,
x0 =

p
3, x1 = e, x2 = 2, x3 = �1.7,

then
π = h3, 0, 2, 1i .

2 Ordinal patterns of length L = 3.
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5. Ordinal symbolic dynamics

If x0, x1, ..., xL�1 = x0, f (x0), ..., f L�1(x0) has type π, then we say that x0
has type π.

Example. I = [0, 1], f (x) = 4x(1� x), then

(f n(0.6416))n�0 = 0.6416, 0.9198, 0.2951, 0.8320, 0.5590, 0.9861, . . .

Hence x = 0.6416 has the types

h0, 1i , h2, 0, 1i , h2, 0, 3, 1i , h2, 4, 0, 3, 1i , h2, 4, 0, 3, 1, 5i , . . .
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5. Ordinal symbolic dynamics

Example (cont�d). Visualization of ordinal 2-patterns

0 0.2 0.4 0.6 0.8 1

1

01 10
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5. Ordinal symbolic dynamics

Example (cont�d). Visualization of ordinal 3-patterns

0 0.2 0.4 0.6 0.8 1

1

012 021 201 102 120
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5. Ordinal symbolic dynamics

Ordinal symbolic dynamics is the symbolic dynamics which symbols
are ordinal patterns of a �xed length L.
The state space Ω gets divided in L! disjoint subsets Pπ, π 2 SL,
namely

Pπ = fx 2 Ω : x has type π 2 SLg.
The partition

PL = fPπ 6= ∅ : π 2 SLg
is called the ordinal partition of Ω of length L.
Use 3 � L � 7 in applications.
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5. Ordinal symbolic dynamics

De�nition. An ordinal L-pattern π is said to be forbidden for f if Pπ = ∅,
i.e., there is no x 2 Ω of type π. Otherwise they are called admissible.

If Ω is an interval of R, f : Ω! Ω is called piecewise monotone if there
is a �nite partition of Ω into intervals, such that f is continuous and
monotone on each of those intervals.

Fact. If f is a piecewise strictly monotone interval map, then it has
forbidden pattern of su¢ ciently large length.
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5. Ordinal symbolic dynamics

Example. The logistic map has 1 forbidden 3-pattern (210)

0 0.2 0.4 0.6 0.8 1

1

012 021 201 102 120
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5. Ordinal symbolic dynamics

Example. The logistic map has 12 forbidden 4-patterns.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

0123

0132

0312

3012 0312

0213

2031

2301

2031

2013 3102

1320

1230

1203

1230
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5. Ordinal symbolic dynamics

A) Permutation entropy of a random process

X = fXngn�0 a random process

p(π) the probability that X0, ..., XL�1 has type π 2 SL

Then, the permutation entropy of order L of X is

h�(X1, ...XL) = �
1

L� 1 ∑
π2SL

p(π) log p(π),

and the permutation entropy of X is

h�(X) = lim
L!∞

h�(X1, ...XL) = � lim
L!∞

1
L� 1 ∑

π2SL

p(π) log p(π).

Fact2. If X is �nite-alphabet and stationary, then h�(X) = h(X).

2J.M.Amigó, Physica D 241 (2012) 789.
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5. Ordinal symbolic dynamics

B) Permutation entropy of a dynamical system

(Ω, f , µ) a measure-preserving DS

PL = fPπ 6= ∅ : π 2 SLg the ordinal partition
Then, the metric permutation entropy of order L of f is

h�µ(f ;PL) = �
1

L� 1 ∑
π2SL

µ(Pπ) log µ(Pπ),

and the permutation entropy of f is

h�µ(f ) = � lim
L!∞

h�µ(f ;PL) = � lim
L!∞

1
L� 1 ∑

π2SL

µ(Pπ) log µ(Pπ),
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5. Ordinal symbolic dynamics

Fact3. If Ω is a 1D interval and f is piecewise-monotone,

hµ(f ) = h�µ(f ) = lim
L!∞

h�µ(f ;PL).

=) The ordinal partitions P2,P3, ...,PL, ... build a generating sequence.

3C. Bandt, G. Keller, and B. Pompe, Nonlinearity 15 (2002) 646.
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6. Detection of determinism

Detection of determinism in noisy signals is an application of ordinal
symbolic dynamics.

Consider a �nite, noisy time series

ξn = f n(x0) +wn

(0 � n � N� 1) where wn is white noise.

Facts.

Deterministic signals have forbidden patterns (but they are �destroyed�
by the noise)

Random signals have no forbidden patterns (but �nite signals may
have missing ordinal patterns)
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6. Detection of determinism

Null hypothesis:
H0: the ξn are i.i.d.

Detection method 1: Count and shu­ e.

1 Count the number of missing pattern is a sliding window of size L
2 Randomize the sequence
3 Repeat step 1 an compare.

If the counts in steps 1 and 3 are very di¤erent, reject H0.
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6. Detection of determinism

Null hypothesis:
H0: the ξn are i.i.d.

Detection method 2: Chi-square test.

1 Take a sliding window of size L and compute

χ2(L) = ∑
π2SL

(νπ � K/L!)2

K/L!
=

L!
K ∑

π2SL: visible
ν2

π � K,

where νπ is the number of windows of type π 2 SL.
2 Reject H0 with con�dence level α if

χ2 > χ2
L!�1,1�α,

where χ2
L!�1,1�α is the upper 1� α critical point for the chi-square

distribution with L!� 1 degrees of freedom.
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6. Detection of determinism

Numerical simulation. The Lorenz map

xn+1 = xnyn � zn, yn+1 = xn, zn+1 = yn.

has an attractor with D1 = 2.

­4 ­2 0 2 4
­3

­2

­1

0

1

2

3

ξ
n

ξ n+
1

Figure. Return map of the x-component contaminated with Gaussian
white noise (σ = 0.25)
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6. Detection of determinism

0 2000 4000 6000 8000

10
0

10
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<n
(L
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L=7

L=6
L=5

L=4

Figure. Average number of missing L-patterns for the x-component of
noisy Lorenz time series ξN

1 (σ = 0.25).
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6. Detection of determinism
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Figure. Average number of missing L-patterns for Gaussian white noise
wN

1 (σ = 0.25).
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6. Detection of determinism

0 50 100 150 200
0
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χ2

N
(χ

2 )

a)

Figure. Distribution of χ2(L = 4) for noisy Lorenz time series ξ1000
1 with

σ = 0.25 (continuous line) and σ = 0.50 (dashed line). Rejection
threshold: χ2

23,0.95 = 35.17.
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6. Detection of determinism

500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

χ2

N
(χ

2 )
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Figure. Distribution of χ2(L = 5) for noisy Lorenz time series ξ8000
1 with

σ = 0.25 (continuous line) and σ = 0.50 (dashed line). Rejection
threshold: χ2

119,0.95 = 145.46.
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6. Detection of determinism

Comparison with the BDS test of independence.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

σ

P

Figure. Rejection probability for a noisy Lorenz time series using the BDS
test with di¤erent parameters (continuous lines) and forbidden patterns

(dashed line).
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